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On the Upper Bounds for Permanents 

Ahmet Ali ÖÇAL1 

Abstract: In this paper, considering  and λ  operator norms, we obtained some 
upper bounds for permanents. 
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Permanentlerin Üst Sınırları Üzerine 

Özet: Bu çalışmada,  ve  operatör normları gözönüne alınarak permanentler 
için bazı üst sınırlar elde edilmiştir. 
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Introduction and the Statemens of Results   

Definition 1. [1] The permanent of a real n×n matrix  is defined by )a(A ij=

∑∏
∈σ =
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where S  is the symmetric group of order n. n

 
Definition 2. ([2]) The  operator norm of an n×n matrix  is defined  1λ nnij )a(A ×∈= C
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where , (T denoting the transpoze) and  T
n21 )x,,x,x(x Κ=
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Definition 3. ([2]) The  operator norm of an n×n matrix  is defined  2λ nnij )a(A ×∈= C
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=∈= C , 
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where  and  T
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Definition 4. ([2]) The  operator norm of an n×n matrix  is defined  ∞λ nnij )a(A ×∈= C
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Lemma 1. Let  be the columns of . Then  n21 a,,a,a Κ nnij )a(A ×∈= C
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Proof. We make use of the inequality (see e.g. [1, p.113]) 
 

∏
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where c  are column sums of A and  is a nonnegative matrix. Since  n21 c,,c, Κ nnij )a(A ×=
 

)A(per)A(per ≤  
 

by the triangle inequality, any such bound can be used to produce an upper bound for the  
 
permanents of complex matrices. For example from the inequality (1), we obtain  
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By the Cauchy-Schwarz Inequality, we have  
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So from inequality (2) we obtain  
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n
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and the proof is complete. 
 
Theorem 1. Let  
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 Proof. Denote the columns of A by  and let e  be the standart  n21 a,,a,a Κ n21 e,,e, Κ
 
basis of . Then we have  nC
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and thus the theorem is proved. 
 
Lemma 2. Let   be the columns of . Then n21 a,,a,a Κ nnA ×∈ C
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where  
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Proof. The proof of Lemma is immediately seen from (2). 
 
Theorem 2. Let 
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be λ  operator norm of . Then 1 nnA ×∈ C
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Proof. Considering Lemma 2 and the equality (3), we have 
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Thus the theorem is proved. 
 
Lemma 3. Let   be the columns of . Then n21 a,,a,a Κ nnij )a(A ×∈= C
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and 
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Proof. For all j, 1 , we have  nj ≤≤
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Thus the proof is complete. 
 
 
Theorem 4. Let   be the columns of . Then n21 a,,a,a Κ nnij )a(A ×∈= C
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Proof. Considering Lemma 2 and Lemma 3 the proof is easily seen. 
 
Theorem 5. Let  
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Proof. From Theorem 4 and equality (3), we have 
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and thus the theorem is proved. 
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