On the Upper Bounds for Permanents

Ahmet Ali ÖÇAL¹

Abstract: In this paper, considering λ_1 , λ_2 and λ_{∞} operator norms, we obtained some upper bounds for permanents.

Key Words: λ_1 , λ_2 and λ_{∞} operator norms, permanent

Permanentlerin Üst Sınırları Üzerine

Özet: Bu çalışmada, λ_1 , λ_2 ve λ_{∞} operatör normları gözönüne alınarak permanentler için bazı üst sınırlar elde edilmiştir.

Anahtar Kelimeler: $\lambda_{_{1}}$, $\lambda_{_{2}}\,$ ve $\,\lambda_{_{\infty}}\,$ operatör normları, permanent

Introduction and the Statemens of Results

Definition 1. [1] The permanent of a real n×n matrix $A = (a_{ij})$ is defined by

$$per(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)},$$

where S_n is the symmetric group of order n.

Definition 2. ([2]) The λ_1 operator norm of an n×n matrix $A = (a_{ij}) \in C_{n \times n}$ is defined

$$\|A\|_{1} = \max\{\|Ax\|_{1} \colon x \in \mathbf{C}^{n}, \|x\|_{1} = 1\},\$$

where $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{K}, \mathbf{x}_n)^T$, (T denoting the transpoze) and

$$\left\|\mathbf{x}\right\|_{1} = \sum_{i=1}^{n} \left|\mathbf{x}_{i}\right|.$$

Definition 3. ([2]) The λ_2 operator norm of an n×n matrix $A = (a_{ij}) \in \mathbf{C}_{n \times n}$ is defined

$$\left\|A\right\|_{2} = \max\left\{\left\|Ax\right\|_{2} \colon x \in \mathbf{C}^{n}, \left\|x\right\|_{2} = 1\right\},\$$

¹ Department of Mathematics, University of Gazi, 42500 Ankara, TURKEY

where $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{K}, \mathbf{x}_n)^T$ and

$$\|\mathbf{x}\|_{2} = \left(\sum_{i=1}^{n} |\mathbf{x}_{i}|^{2}\right)^{\frac{1}{2}}.$$

Definition 4. ([2]) The λ_{∞} operator norm of an n×n matrix $A = (a_{ij}) \in C_{n \times n}$ is defined

$$\left\|A\right\|_{\infty} = \max\left\{\left\|Ax\right\|_{\infty} \colon x \in \mathbf{C}^{n}, \left\|x\right\|_{\infty} = 1\right\},\$$

where $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{K}, \mathbf{x}_n)^T$ and

$$\left\| \mathbf{x} \right\|_{\infty} = \max_{1 \leq i \leq n} \left| \mathbf{x}_i \right|.$$

Lemma 1. Let a_1, a_2, K , a_n be the columns of $A = (a_{ij}) \in \boldsymbol{C}_{n \times n}$. Then

$$|\operatorname{per}(\mathbf{A})| \leq (\sqrt{n})^{n} \|\mathbf{a}_{1}\|_{2} \|\mathbf{a}_{2}\|_{2} K \|\mathbf{a}_{n}\|_{2},$$

where

$$\|\mathbf{a}_{j}\|_{2} = \left(\sum_{i=1}^{n} |\mathbf{a}_{ij}|^{2}\right)^{\frac{1}{2}}$$
, $1 \le j \le n$.

Proof. We make use of the inequality (see e.g. [1, p.113])

$$per(A) \le \prod_{i=1}^{n} c_{i}$$

where c_1, c_2, K, c_n are column sums of A and $A = (a_{ij})_{n \times n}$ is a nonnegative matrix. Since

$$|\operatorname{per}(A)| \leq \operatorname{per}(|A|)$$

by the triangle inequality, any such bound can be used to produce an upper bound for the permanents of complex matrices. For example from the inequality (1), we obtain

$$\left|\operatorname{per}(\mathsf{A})\right| \leq \prod_{j=1}^{n} q_{j},$$
 (2)

where

$$q_{j} = \sum_{i=1}^{n} \left| a_{ij} \right|, \ j = 1, 2, K, n$$

By the Cauchy-Schwarz Inequality, we have

$$q_{j} = \sum_{i=1}^{n} \left| a_{ij} \right| \leq \left(\sum_{i=1}^{n} \left| a_{ij} \right|^{2} \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} 1 \right)^{\frac{1}{2}} = \left(\sum_{i=1}^{n} \left| a_{ij} \right|^{2} \right)^{\frac{1}{2}} \sqrt{n} = \left\| a_{j} \right\|_{2} \sqrt{n}.$$

So from inequality (2) we obtain

$$|\operatorname{per}(A)| \le (\sqrt{n})^{n} \|a_{1}\|_{2} \|a_{2}\|_{2} K \|a_{n}\|_{2}$$

and the proof is complete.

Theorem 1. Let

$$\|A\|_{2} = \max\{\|Ax\|_{2} : x \in \mathbf{C}^{n}, \|x\|_{2} = 1\}$$

be λ_2 operator norm of $A \in \boldsymbol{C}_{n \! \times \! n}$. Then

$$\left|\operatorname{per}(\mathsf{A})\right| \leq n^{\frac{n}{2}} \left\|\mathsf{A}\right\|_{2}^{n}.$$

Proof. Denote the columns of A by a_1, a_2, K , a_n and let e_1, e_2, K , e_n be the standart

basis of $\, {\boldsymbol{C}}^n$. Then we have

$$\mathbf{a}_{j} = \mathbf{A} \mathbf{e}_{j}, \ 1 \le j \le \mathbf{n} \,. \tag{3}$$

So considering Lemma 1 we have

$$per(\mathbf{A}) | \leq n^{\frac{n}{2}} \|\mathbf{a}_1\|_2 \|\mathbf{a}_2\|_2 \mathbf{K} \|\mathbf{a}_n\|_2$$
$$\leq n^{\frac{n}{2}} \left(\max_{1 \leq j \leq n} \|\mathbf{a}_j\|_2 \right)^n$$
$$= n^{\frac{n}{2}} \left(\max_{1 \leq j \leq n} \|\mathbf{A}\mathbf{e}_j\|_2 \right)^n$$
$$\leq n^{\frac{n}{2}} \left(\max_{\|\mathbf{x}\|_2 = 1} \|\mathbf{A}\mathbf{x}\|_2 \right)^n$$
$$= n^{\frac{n}{2}} \|\mathbf{A}\|_2^n$$

and thus the theorem is proved.

Lemma 2. Let a_1, a_2, K, a_n be the columns of $A \in \boldsymbol{C}_{n \times n}$. Then

$$\left|\operatorname{per}(A)\right| \leq \prod_{j=1}^{n} \left\|a_{j}\right\|_{1},$$

where

$$\left\|\boldsymbol{a}_{j}\right\|_{1}=\sum_{i=1}^{n}\left|\boldsymbol{a}_{ij}\right|,\ \ j=1,2,\mathrm{K}\ ,n\ .$$

Proof. The proof of Lemma is immediately seen from (2).

Theorem 2. Let

$$\|A\|_{1} = \max\{\|Ax\|_{1} \colon x \in \mathbf{C}^{n}, \|x\|_{1} = 1\}$$

be λ_1 operator norm of $\,A \in \boldsymbol{C}_{n \! \times \! n}\,.$ Then

$$\left|\operatorname{per}(A)\right| \leq \left\|A\right\|_{1}^{n}$$
.

 $\ensuremath{\text{Proof.}}$ Considering Lemma 2 and the equality (3), we have

$$|\operatorname{per}(A)| \leq ||a_1||_1 ||a_2||_1 K ||a_n||_1$$

$$\leq ||Ae_1||_1 ||Ae_2||_1 K ||Ae_n||_1$$

$$\leq \left(\max_{1 \leq j \leq n} ||Ae_j||_1\right)^n$$

$$\leq \left(\max_{\|x\|_1 = 1} ||Ax||_1\right)^n$$

$$= ||A||_1^n .$$

Thus the theorem is proved.

Lemma 3. Let a_1, a_2, K , a_n be the columns of $A = (a_{ij}) \in C_{n \times n}$. Then

$$\left\|\mathbf{a}_{j}\right\|_{1} \leq \mathbf{n} \left\|\mathbf{a}_{j}\right\|_{\infty},$$

where

$$\left\|a_{j}\right\|_{1} = \sum_{i=1}^{n} \left|a_{ij}\right|, \ j = 1, 2, K, n,$$

and

$$\left\|\boldsymbol{a}_{j}\right\|_{\scriptscriptstyle{\infty}} = \max_{1 \leq i \leq n} \left|\boldsymbol{a}_{ij}\right| \;,\;\; 1 \leq j \leq n \;.$$

Proof. For all j, $1 \le j \le n$, we have

$$\begin{split} \left\| \boldsymbol{a}_{j} \right\|_{1} &= \sum_{i=1}^{n} \left| \boldsymbol{a}_{ij} \right| = \left| \boldsymbol{a}_{1j} \right| + \left| \boldsymbol{a}_{2j} \right| + \Lambda + \left| \boldsymbol{a}_{nj} \right| \\ &\leq n \max_{1 \leq i \leq n} \left| \boldsymbol{a}_{ij} \right| \\ &= n \left\| \boldsymbol{a}_{j} \right\|_{\infty}. \end{split}$$

Thus the proof is complete.

Theorem 4. Let a_1, a_2, K , a_n be the columns of $A = (a_{ij}) \in \mathbf{C}_{n \times n}$. Then

$$\left| \text{per}(A) \right| \leq n^n \prod_{j=1}^n \left\| a_j \right\|_{\infty} \; .$$

Proof. Considering Lemma 2 and Lemma 3 the proof is easily seen.

Theorem 5. Let

$$\left\|A\right\|_{\infty} = \max\left\{\left\|Ax\right\|_{\infty} \colon x \in \mathbf{C}^{n}, \left\|x\right\|_{\infty} = 1\right\}$$

be $\,\lambda_{\!\scriptscriptstyle \infty}\,$ operator norm of A .Then

 $\left| \operatorname{per}(\mathsf{A}) \right| \leq n^n \left\| \mathsf{A} \right\|_{\infty}^n$.

Proof. From Theorem 4 and equality (3), we have

$$\left| \operatorname{per}(\mathsf{A}) \right| \leq n^n \left\| \mathbf{a}_1 \right\|_{\infty} \left\| \mathbf{a}_2 \right\|_{\infty} \mathbf{K} \left\| \mathbf{a}_n \right\|_{\infty}$$

On the Upper Bounds for Permanents

$$\leq n^{n} \left(\max_{1 \leq j \leq n} \left\| \mathbf{a}_{j} \right\|_{\infty} \right)^{n}$$
$$= n^{n} \left(\max_{1 \leq j \leq n} \left\| A \mathbf{e}_{j} \right\|_{\infty} \right)^{n}$$
$$\leq n^{n} \left(\max_{\|\mathbf{x}\|_{\infty} = 1} \left\| A \mathbf{x} \right\|_{\infty} \right)^{n}$$
$$= n^{n} \left\| A \right\|_{\infty}^{n},$$

and thus the theorem is proved.

REFERENCES

Minc, H., Permanents, In Encyclopedia of Mathematics and Its Applications Vol. 6, Addison-Wesley (1978).
Taşcı, D., On a Conjecture by Goldberg and Newman, Linear Algebra and its Appl., 215: 275-277 (1995).