The Sheaf of The H-Cogroups

Ahmet Ali ÖÇAL¹

Abstract: In this study we show that the sheaf which is constructed in [1] is a sheaf of H -cogroups and it is an H -cospace if we equip the set of sections of this sheaf with the compact-open topology. Finally we give some characterizations.

Key Words: Cospace, Sheaf, Cogroup, Homotopy

H-Kogrupların Demeti

Özet: Bu çalışmada [1] deki metod kullanılarak H-kogrupların demeti inşa edilmiş ve bu demetin her bir kesitlerinin kümesi kompakt açık topoloji ile donatılmış ise bir H-kouzayı olduğu gösterilmiştir. Sonuç olarak bazı karakterizasyonlar verilmiştir.

Anahtar Kelimeler: Kouzay, Demet, Kogrup, Homotopi

Introduction

Let C be the category of topological spaces X satisfying the property that all pointed topological spaces (X, x), $x \in X$ have the same homotopy type. This category includes for example all topological vector spaces. Let us take $X \in C$ as a base set if Q is any abelian H cogroup, then there exists a sheaf (H,π) over the topological space X which is formed by a Q *H*-cogroup. For each $x \in X$, $\pi^{-1}(x) = [Q; (X, x)] = H_x$ is the stalk of the sheaf which has a discrete topology. (where $[Q;(X,x)] = H_x$ is a set of homotopy classes of homotopic maps preserving the base points from (Q, q_0) to (X, x) [1,7].

2. The Sheaf of the *H* -Cogroups

Definition 2.1. Let (X, x) be a pointed topological space. The diagonal map

$$\Delta_X : X \to X \times X$$

 $\Delta_X : X \to X \times X$ is defined by $\Delta_X(x) = (x, x)$ and the dual of the diagonal map Δ_X , denoted by ∇_X , with $\nabla_{Y}: X \lor X \to X$

defined by

 $\nabla_{X}(x, x_{0}) = \nabla_{X}(x_{0}, x) = x.[2].$

Definition 2.2. Let (H,π) be a sheaf over X and $s \in \Gamma(X,H)$ [1]. The folding map

 ∇_{H_x} : $H_x \lor H_x \to H_x$

is defined by

$$\nabla_{H_x}([f]_x, (s \circ \pi)[f]_x) = [f]_x$$

¹ Gazi University, Faculty of Arts and Sciences, Department of Mathematics, 06500 Ankara, Turkey

and

$$\nabla_{H_x}((s \circ \pi)([f]_x), [f]_x) = [f]_x$$

Now let us define a comultiplication on H_x as follows: if $[f]_x, [c]_x \in H_x$ then

$$v_{x}: H_{x} \to H_{x} \lor H_{x}$$
$$v_{x} \left(\begin{bmatrix} f \end{bmatrix}_{x} \right) = \begin{bmatrix} \nabla_{X} \circ (f, c) \circ v \end{bmatrix}_{x},$$

where v is an operation of a Q H -cogroup and

$$c: Q \to (X, x)$$

is a constant map.

It follows from this definition that the comultiplication v_x is well-defined, closed, continuous and with this comultiplication H_x is an H-cogroup. In fact, the constant map

which satisfies

$$c_{x}(H_{x}) = [c]$$

 $c_x \cdot H_x \rightarrow H_x$

is a homotopy identity of a pointed topological space $(H_x, [c]_x)$. That is, each of the composites

$$H_{x} \xrightarrow{\nu_{x}} H_{x} \vee H_{x} \begin{pmatrix} 1_{H_{x}} \vee c_{x} \end{pmatrix} \xrightarrow{V_{x}} H_{x} \vee H_{x} \xrightarrow{\nabla_{x}} H_{x}$$

is a homotopic to $1_{H_{\star}}$, that is,

$$\nabla_x \left(1_{H_x} \vee c_x \right) v_x \simeq 1_{H_x} \simeq \nabla_{H_x} \left(c_x \vee 1_{H_x} \right) v_x.$$

The continuous map

$$\phi_x : H_x \to H_x$$

is a homotopy inverse for H_{x} . That is, each of the composites

$$H_{x} \xrightarrow{\nu_{x}} H_{x} \vee H_{x} \begin{pmatrix} 1_{H_{x}} \vee \phi_{x} \\ \longrightarrow \end{pmatrix} H_{x} \vee H_{x} \xrightarrow{\nabla_{x}} H_{x}$$

is homotopic to c_x , that is

$$\nabla_{x} \left(1_{H_{x}} \lor \phi_{x} \right) v_{x} \simeq c_{x} \simeq \nabla_{H_{x}} \left(\phi_{x} \lor 1_{H_{x}} \right) v_{x},$$

where $\phi(x)$ is defined by

$$\phi_x\left([f]_x\right) = [f \circ \phi]_x$$

and ϕ is homotopy inverse of a Q H -cogroup.

It can be shown also that v_{r} is a homotopy associative.

Now we have the following results:

Result: 1. H_x is an H-cogroup.

Result: 2. The sheaf which is constructed in [1] is a sheaf of *H* -cogroups.

Let $\Gamma(X, H)$ denote the set of global section of H with the compact-open topology. Then the mapping

$$v':\Gamma(X,H)\to\Gamma(X,H)\vee\Gamma(X,H)$$

which is given by

$$v'(s)(x) = v_x(s(x)) = v_x([f]_x) = [\nabla_x \circ (f,c) \circ v]$$

 $(s \in \Gamma(X, H), x \in X)$ defines a comultiplication on $\Gamma(X, H)$ such that v' is well-defined, closed and continuous [3]. In fact, if U is an open neighborhood of v'(s) in $\Gamma(X, H) \lor \Gamma(X, H)$

for every $s \in \Gamma(X, H)$, then there exists is finite collection of open sets in the subbasis, $\{M(C_i, O_i)\}_{i \in J}$ (*J* is finite) such that

$$v'(s) \in \left(\bigcap_{i \in J} M(C_i, O_i) \lor \bigcap_{i \in J} M(C_i, O_i)\right) \subset U.$$

Since the comultiplications v_x are continuous in H_x , we can choose neighborhoods U_i of s(x) such that if $s_i(x') \in U_i$, then

$$v'(s_i)(x') = v_{x'}(s_i(x')) \in (O_i \lor O_i)$$

Thus, $s \in \bigcap M(C_i, U_i)$ and if $s' \in M(C_i, U_i)$ then
 $V'(s) \in (\bigcap M(C_i, O_i) \lor \bigcap M(C_i, O_i))$

since

$$v'(s')(x) = v_x(s'(x)) \le \bigcap (O_i, O_i)$$

for all $x \in \bigcap C_i$.

Let $I: X \to H$ be the section $(\pi \circ I = 1_x)$ satisfying $I(x) \in C(c_x) \subset H_x$. Such an I exists and continuous [4], where $C(c_x)$ is the path component of c_x in H_x . Thus, I is the identity of $\Gamma(X, H)$. Hence, we have the following result:

Result: 3. Since H_x is an H-cogroup, $\Gamma(X, H)$ is an H-cospaces with comultiplication v'.

Let *S* be family of supports on *X* and $V \subset X$. Then $\Gamma_{S|V}(V,H)$ is the collection of sections $s \in \Gamma(V,H)$ satisfying $|s| = \{x \in X : s(x) \notin C(c_x)\}$ where $S|V = \{A \subset V : A \in S\}$. The collection $\Gamma_{S|V}(V,H)$ is closed under the comultiplication of $\Gamma(X,H)$ which restricted to $\Gamma_{S|V}(V,H)$ for if $s \in \Gamma_{S|V}(V,H)$ then $|s| \in S|V$. Since

$$\left| v_{S|V}'(s) \right|^{c} = \left\{ x \in X : v_{S|V}(V, H) \in C(c_{x}) \right\} \supseteq \left| s \right|^{c},$$

it follows that $|v'_{S|V}(s)| \subset |s|$ and so $|v'_{S|V}(s)| \in S|V$. Also $I \in \Gamma_{S|V}(V,H)$ (because $I = \{x \in X : I(x) \notin C(c_x)\} = \emptyset$) and hence $\Gamma_{S|V}(V,H)$ is an H-cospace.

Thus for any open subset U is of $X, \Gamma(X, H)$ is an H-cospace (Result 3). If V is another open subset of X such that $V \subset U$ we can define a map $\gamma_{V}^{U} : \Gamma(U, H) \rightarrow \Gamma(V, H)$ which is called restricted map, that is $\gamma_{V}^{U}(S) = S|V$.

If U,V and W are any three open subsets of X such that $W \subset V \subset U$ then one can observe that $\gamma_{W}^{U} = \gamma_{W}^{V} \circ \gamma_{V}^{U}$ and so $\left\{ \Gamma(U,H), \gamma_{V}^{U}, X \right\}$ is called direct system [5].

3. The Characterizations

Let Q be any H-cogroup and X_1, X_2 be two topological spaces in Category C. Let H_1, H_2 be the corresponding sheaves which is given Result 2, respectively. Let us denote these as the pairs (X_1, H_1) and (X_2, H_2) .

Definition 3. Let the pairs (X_1, H_1) and (X_2, H_2) be given. We say that there is a homomorphism between these pairs and write

$$F(\beta^*,\beta):(X_1,H_1)\to (X_2,H_2),$$

if there exist a pair $F(\beta^*, \beta)$ such that

1. $\beta: X_1 \rightarrow X_2$ is a surjective and continuous map.

- 2. $\beta^*: H_1 \rightarrow H_2$ is a continuous map.
- 3. β^* preserves the stalks with respect to β . That is, the following diagram is commutative

4. For every $x_1 \in X_1$ the restricted map $\beta^* | H_{x_1} : H_{1x_1} \to H_{2\beta(x_1)}$ is a homomorphism.

Theorem 3. Let the pairs (X_1, H_1) and (X_2, H_2) be given. If the map $\beta: X_1 \to X_2$ is surjective and continuous, then there exists a homomorphism between the pairs (X_1, H_1) and (X_2, H_2) .

Proof. Let $x_1 \in X$ be arbitrarily fixed point. Then $\beta(x_i) \in X_2$ and

$$[Q:(X,x_1)] = H_{1x_1} \subset H_1, [Q:(X,\beta(x_1))] = H_{2\beta(x_1)} \subset H_2$$

are corresponding *H* -cogroups or stalks.

Since $(X_1, x_1), (X_2, \beta(x_1))$ are pointed topological spaces and f_1, g_1 are base-points preserving continuous maps from (Q, q_0) to (X_1, x_1) then there exists f_2, g_2 base-points preserving continuous maps from (Q, q_0) to $(X_2, \beta(x_1))$ can be defined as $f_2 = \beta \circ f_1, g_2 = \beta \circ g_1$, respectively. Moreover, if $f_1 \sim g_1 \operatorname{rel}.q_0$, then it can be easily shown that $f_2 \sim g_2 \operatorname{rel}.q_0$. Thus the correspondence $[f]_{x_1} \rightarrow [\beta \circ f]_{\beta(x_1)}$ is well-defined [6] and it maps homotopy classes of basepoints preserving continuous maps from (Q, q_0) to (X_1, x_1) , to the homotopy classes of basepoints preserving continuous maps from (Q, q_0) to $(X_2, \beta(x_1))$. That is, to each element $[f]_{x_1}$ there corresponds a unique element $[\beta \circ f]_{\beta(x_1)}$.

Since the point $x_1 \in X$ is arbitrarily fixed, the above correspondence gives us a map $\beta^*: H_1 \to H_2$ such that $\beta^*([f]) = [\beta \circ f] \in H_2$, for every $[f] \in H_1$.

1) β^* is continuous. Because if $U_2 \subset H_2$ is any open set, then it can be shown that $\beta^{*^{-1}}(U_2) = U_1 \subset H_1$ is an open set. In fact, if $U_2 \subset H_2$ is an open set, then $U_2 = \bigvee_{i \in I} s_i^2(W_i)$ and $\pi_2(U_2) = \bigvee_{i \in I} W_i$, where the W_i 's are open neighborhoods and the s_i^2 are sections over W_i . Thus $\bigcup_{i \in I} W_i \subset X_2$ is an open set and $\beta^{-1} (\bigvee_{i \in I} W_i) \subset X_1$ is an open set since β is a surjective and continuous map. Furthermore, since $\beta^{-1}(W_i)$, $i \in I$ are open in X_1 , there exist sections

such that

$$\bigvee_{\alpha} s_i^1 \left(\beta^{-1} \left(W_i \right) \right) \subset H_1$$

 $s_i^1:\beta^{-1}(W_i)\rightarrow H_1$

is an open set. It can be shown that

$$U_1 = \bigvee_{i \in I} s_i^1 \left(\beta^{-1} \left(W_i \right) \right)$$

2. β^* preserves the stalks with respect to β . In fact, for any

$$\begin{bmatrix} f \end{bmatrix}_{x_1} \in H_{1x_1} \subset H_1, \\ (\beta \circ \pi_1)([f]_{x_1}) = \beta (\pi_1 ([f]_{x_1})) = \beta (x_1) = x_2 \\ (\pi_2 \circ \beta^*)([f]_{x_1}) = \pi_2 (\beta^* [f]_{x_1}) = \pi_2 ([\beta \circ f]_{x_2}) = x_2.$$

3.It can be easily shown that $\beta^* | H_{1x_1}$ is a homomorphism.

As a result $F = (\beta^*, \beta)$ is a homomorphism.

References

- [1] Öcal, A.A. and Yıldız, C., The sheaf of the groups formed by *H*-cogroups over topological spaces, Commun. Fac. Sci. Univ. Ank. Serias A1, 37: 1-4 (1988).
- [2] Switzer, R.M., Algebraic Topology-Homotopy and Homology, Springer-Verlag 1975.
- [3] Yıldız, C. And Öcal, A.A., The sheaf of the *H*-groups, Jour. Of the Inst. Of Sci. And Tech. Of Gazi Univ. 10 (2): 223-230 (1997).
- [4] Yıldız, C., "Kompleks Analitik Manifoldların Homoloji Grubu üzerine" Erciyes Univ. Fen-Bil. Enst. Dergisi, 2: 1008-1015 (1990).
- [5] Yıldız, C., The Sheaf of the Homology Groups of the Complex Manifolds, Commun Fac. Sci Univ. Ank. Series A1, 46: 135-141 (1997).
- [6] Yıldız, C., Some Theorems on the sheaf of the groups Formed by H-groups over topological spaces, Pure and Applied Math. Sci. XXIX (1-2) March: 141-147 (1989).
- [7] Yıldız, C., On the sheaf cohomology, Gazi Univ. Fen-Edb. Fak. Fen Bil. Dergisi 7: 117-124 (1997).

The Sheaf of The H-Cogroups