On C-Continuous Functions

Aynur KESKİN¹, Ahu AÇIKGÖZ¹

Abstract: E. Hatır and et. al introduced a new decomposition of continuity called C-continuity. S. Jafari investigated further this type of continuity. In this paper, we obtain some properties of C-sets and C-continuity.

Key Words: C₌set, C-continuous function, C-irresolute function, strongly C-closed graph.

Özet: [Eşref Hatır ve arkadaşları, C-süreklilik adlı sürekliliğin yeni bir ayrışımını tanımladılar. S. Jafari, bu süreklilik çeşidini daha ayrıntılı inceledi. Bu makalede biz, C-kümelerin ve C-sürekliliğin bazı özelliklerini elde ettik.

Anahtar Kelimeler: C-küme, C-sürekli fonksiyon, C-kararsız fonksiyon, kuvvetli C-kapalı grafik.

Introduction

E. Hatır, T. Noiri and Ş. Yüksel [1] introduced the notions of α^* -set, C-set and C-continuity in topological spaces and established a decomposition of continuity. In [3], S. Jafari investigated further this type of continuity and introduced notion of strongly C-closed. He also proved that for $f: X \to Y$ is a function if Y is a Hausdorff space, C-continuity necessary to strongly C-closed. Recently, E. Hatır [4] defined C-irresolute function. In this paper, we obtain some properties of C-sets and C-continuity. We also compare with the notions of C-continuity and strongly C-closed.

Preliminaries

Throughout this paper X and Y indicate topological spaces on which no seperation axiom is pressumed. Let A be a subset of a space X. The closure of A and interior of A are denoted by CI(A) and Int(A), respectively.

We will recall some definitions used in the sequel.

Definition 2.1. A subset A of a space X is said to be

- (a) α^* -set [1], if Int(Cl(Int(A))) = Int(A),
- (b) C-set [1], if A = O \cap F, where O is open and F is an α^* -set.

We used the notion of C-open set instead of C-set and taken the notion of

Selcuk University, Department of Mathematics, [42031] Campus/Konya/TURKEY

C-closed set as complement of C-open set.

Definition 2.2. A function f:X \rightarrow Y is said to be C-continuous [1](resp. α -continuous [2]) if for each open set V of Y, f⁻¹ (V) is a C-set (resp. α -set) in X.

Definition 2.3. A function $f: X \to Y$ is C-continuous at $x \in X$, if for each open set

 $V \subset Y$ containing f (x), there exists a C-set U in X containing x such that f (U) $\subset V$. The function f is called C-continuous on X if it has this property for each point x in X [3].

It is clear that Definition 2.2 equivalent to Definition 2.3.

Definition 2.4. For a function $f:(X,\tau)\to (Y,\varphi)$, the graph

$$G(f) = \{(x, f(x)) : x \in X\}$$

is called strongly C-closed if for each $(x,y) \in ((XxY) \setminus G(f))$, there exists a C-set U and open set V containing x and y respectively such that $[UxV] \cap G(f) = \emptyset$ by ([3], Definition 2.4).

In [1], the following decompositions of continuity have been established.

Theorem 2.1. The following are equivalent for a function $f: X \to Y$:

- (a) f is continuos,
- (b) f is α -continuous and C-continuos.

In [4], E. Hatır given a new strengthen type of C-continuity called C-irresolute. This notion is given as similar to following.

Definition 2.5. A function $f: X \to Y$ is said to be C-irresolute, if for every C-set of A in Y, its inverse image $f^{-1}(A)$ is C-set in X ([4], Definition 4.1).

Definition 2.6. A point x in X called C-cluster point of $A \subset X$ if $A \cap C \neq \emptyset$ for every C-set C containing x. The set of all C-cluster points of A is called C-closure of A ([3], Definition 2.1). He also denoted C-closure of A by [A]_C and said that A_is a C-closed if [A]_C = A.

Some new properties of C-sets

The family of all C-sets of a space (X, τ) will be denoted by C(X, τ) or C(X).

Remark 3.1. The union of two C-sets need not be an C-set.

Example 3.1. Let (X,τ) be the same topological space as in [1], Example 3 that is, $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}\}$. Then $\{a\}$ and $\{b\}$ are $\{a, b\}$ is not a C-set. It is known in [5, Theorem 2.11] that the intersection of any members of $\alpha^*(X,\tau)$ belongs to $\alpha^*(X,\tau)$. Furthermore, the intersection of two open-sets is always an open set from [6], Chapter 1, Definition 1. It is clear that , the intersection of finite members of (X,τ) belongs to (X,τ) .

We can also give the following two lemma.

Lemma 3.1. If A is an open and C is a C-set in a space X, then ($A \cap C$) is a C-set in a space X.

Proff. Since C is a C-set, there exists an open set O and a C-set F such that $C = O \cap F$, from Definition 2.1.a). It follows that $B = A \cap O$ is an open set, because the intersection of two open-sets is always an open set from [1], Chapter 1, Definition 1. Therefore;

$$A \cap C = A \cap (O \cap F) = (A \cap O) \cap F = B \cap F = C_1$$

is a C-set from Definition 2.1.b).

Lemma 3.2. If F_1 is an α *-set and C is a C-set in a space X, then $C \cap F_1$ is a C-set in a space X.

Proff. Since C is a C-set, there exists an open set O and C-set F such that $C = O \cap F$, Definition 2.1.b). It follows that $F_2 = (F \cap F_1)$ is an α *-set, because the intersection of two α *-sets is always an α *-set from [5], Theorem 2.11. Therefore;

$$C \cap F_1 = (O \cap F) \cap F_1 = O \cap (F \cap F_1) = O \cap F_2 = C_2$$

is a C-set from Definition 2.1.b).

We can ask this question ourselves: "Are there else sets such that its intersection with a C-set is a C-set?" This question is a clear problem with this subject.

4. Some new properties with C-continuity

S.Jafari [3] given following theorem without proof. We prove its.

Theorem 4.1. The following are equivalent for a function $f: X \to Y$.

- (a) f is C-continuous,
- (b) $f([A]_C) \subset Cl(f(A))$ for every subset A of X.
- (c) $[f^{-1}(B)]_{c} \subset f^{-1}[CI(B)]$ for every subset B of Y.

Proof. a) \Rightarrow b). Let $x \in [A]_C$ and V be any open set in Y such that containing f(x). By hypothesis, there exists a C-continuous function f such that $f: X \to Y$. Therefore $f^{-1}(V)$ is a C-set in a space X such that containing x from Definition 2.2. In this condition, before $x \in [A]_C$ and $(A \cap f^{-1}(V)) \neq \emptyset$ by Definition 2.6. Hence, $(f(A) \cap V) \neq \emptyset$ and $f(x) \in Cl(f(A))$. It follows that $f([A]_C) \subset Cl(f(A))$ for every subset A of X.

b)
$$\Rightarrow$$
 c). If we take A = f⁻¹ (B), we could obtain

$$f([f^{-1}(B)]_{c}) \subset CI(f(f^{-1}(B))) \subset CI(B)$$

by b). Since

$$f([f^{-1}(B)]_C) \subset Cl(B),$$

it follows that

$$[f^{-1}(B)]_{C} \subset f^{-1}(CI(B)).$$

c) \Rightarrow a). F be any closed set in Y. Therefore,

$$[f^{-1}(B)]_{C} \subset f^{-1}(CI(F)) = f^{-1}(F)$$

by c). Hence, $f^{-1}(F)$ is a C-closed set in X, so f function is a C-continuous.

Example 4.1 shows the well-known fact that even C-continuous functions may not have strongly C-closed. Example 4.2 shows the equally well-known fact that a function having strongly C-closed graph need not be C-continuous.

Example 4.1. Let (X, τ) be a topological space such that $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{d\}, \{b, c\}, \{b, c, d\}\}$. Let (Y, ϕ) be a topological space such that $Y = \{x, y\}$ and $\phi = \{Y, \emptyset, \{x\}\}$. Let $f: (X, \tau) \to (Y, \phi)$ be a function defined as follows: f(a) = f(b) = x and f(c) = f(d) = y. Then f is a C-continuous functions (This example is given and f is a denoted C-continuous functions in [1], Example 4.2), but G(f) is not strongly C-closed. In fact; for $(a, y) \notin G(f)$, there exist a C-set $\{a, b\}$ and an open set Y containing X and Y respectively. In this case, we obtain that

$$(f({a,b})\cap Y)=({x}\cap Y)\neq\emptyset.$$

It follows that, G (f) is not strongly C-closed from Definition 2.4.

Example 4.2. Let (X, τ) be the same topological space as in Example 3.1 that is, $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}\}$. Let (Y, ϕ) be a topological space such that $Y = \{x, y, z\}$ and $\phi = \{\emptyset, (Y)\}$. Let $f : (X, \tau) \to (Y, \phi)$ be a function defined as follows: f(a) = f(b) = x, f(c) = y and f(d) = z. Then G(f) is strongly C-closed, but f is not a C-continuous. In fact, for an open set $\{x\}$ of ϕ containing x, $f^{-1}(\{x\}) = \{a, b\} \notin C(X, \tau)$. It follows that, f is not a C-continuous functions from Definition 2.2.

Remark 4.1. Although the composition of two continuous functions is a always continuous function, the composition of two C-continuous functions is not a always C-continuous function as the following example shows.

Example 4.3. Let (X, τ) be the same topological space as in Example 4.1. that is; $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{d\}, \{b, c\}, \{b, c, d\}\}$. Let $f: (X, \tau) \to (X, \tau)$ be identity function. Let

g be the same function as f in Example 4.1. Since f, is a identity function, it is always continuous. According to [1], Theorem 4.1, it also C-continuous. We denoted that g is a C-continuous function in Example 4.1. But gof: $(X, \tau) \rightarrow (Y, \phi)$ is not a C-continuous function. Actually; for $\{x\} \subset Y$ open set such that containing x, $g^{-1}(\{x\}) = \{a, b\}$ is a C-set in X by Definition 2.2 but not an open set in X.

We will obtain some conditions for the composition of two functions to be C-continuous.

Theorem 4.2. If $f: X \to Y$ is C-continuous and $g: Y \to Z$ is continuous, then gof: $X \to Z$ is C-continuous.

Proof. Let V be an open set of Z. Since g is continuous, g^{-1} (V) is an open set in Y. In addition since f is C-continuous by Definition 2.2, f^{-1} (g^{-1} (V)) = $(gof)^{-1}$ (V) is a C-set in X. It follows from Definition 2.2 that gof is C-continuous.

Theorem 4.3. If $f:X\to Y$ C-irresolute and $g:Y\to Z$ is C-continuous, then $gof:X\to Z$ is a C-continuous.

Proof. Let V be an open set of Z. Since g is C-continuous by Definition 2.2, $g^{-1}(V)$ is an C-set in Y. In addition since f is C-irresolute by Definition 2.5, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is a C-set in X. It follows from Definition 2.5 that gof is a C-continuous.

Remark 4.2. If $f: X \to Y$ is C-continuous and $A \subset X$ an arbitrary subset, then the restriction $f \mid A: A \to Y$ is not C-continuous function as the following example shows.

Example 4.4. Let (X,τ) and (Y,ϕ) be same topological spaces as in Example 4.1. Let $f:(X,\tau)\to (Y,\phi)$ be a function defined as follows: f(a)=f(b)=f(d)=x and f(c)=y. Then f is a C-continuous functions. But; for $A=\{a,b,c\}$ is a subset of X, $f|A:(A,\tau_A)\to (Y,\phi)$ is not C-continuous. Actually, for an arbitrary subset $A=\{a,b,c\}$, $\tau_A=\{A,\emptyset,\{b\},\{c\},\{b,c\}\}$. We take an open set $\{x\}$ in Y such that containing x. In this case, $(f|A)^{-1}(\{x\})=\{a,b,d\}$ is not a C-set in (A,τ_A) .

We will obtain some conditions for the restriction of a C-continuous functions to be continuous. We recall that; "Let $f: X \to Y$ is an arbitrary function and A is a subset in a space X. Then $f \mid A: A \to Y$ is called restriction".

Theorem 4.4. If $f: X \to Y$ is C-continuous function and A is an open set in a space X, then the restrictions $f \mid A: A \to Y$ is C-continuous function.

Proof. Let V be an open set of Y. Then $f^{-1}(V)$ is a C-set in X. It follows from Lemma 3.1 that $(f|A)^{-1}(V) = (f^{-1}(V) \cap A)$ is a C-set in the subspace A. Therefore, f|A is a C-continuous by Definition 3.2.

It is clear that; C-continuityis not a heredity property.

Theorem 4.4. If $f: X \to Y$ is C-continuous function and A is an α *-set in a space X, then the restrictions $f \mid A: A \to Y$ is C-continuous function.

Proof. Let V be an open set of Y. Then $f^{-1}(V)$ is a C-set in X. It follows from Lemma 3.2 that $(f|A)^{-1}(V) = f^{-1}(V) \cap A$ is a C-set in the subspace A. Therefore, f|A is a C-continuous by Definition 3.2.

References

- 1- E. Hatır, T. Noiri and Ş. Yüksel, A Decomposition of Continuity, Acta Math. Hungar., 70: 145-150 (1996).
- 2- A. S. Mashour, I. A. Hasenein, S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar., 41: 213-218 (1983).
- 3- S. Jafari, On C-Continuous Functions (To appear).
- 4- E. Hatır, On Separation Axiom C- D₁ Commun. Fac. Sci. Univ. Ank. Series A₁ V.47, pp. 105-110.
- 5- D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38: 24-32 (1986).
- 6- Bourbaki, N., Elements of Mathematics General Topology, Part I, Addison-Wesley Publishing Company, Paris (1966).