The Almost Hilbert-Smith Matrices on Gcd-closed Sets¹

Ercan ALTINIŞİK² - Dursun TAŞCI³

Abstract: Let $S = \{x_1, x_2, ..., x_n\}$ be a set of positive integers and let (x_i, x_j) denote the greatest common divisor of x_i and x_j . The $n \times n$ matrix $[S] = (s_{ij})$, where $s_{ij} = (x_i, x_j)/x_i x_j$, is called the almost Hilbert-Smith matrix on S. In this paper we obtain the value of the determinant $[S] = (s_{ij})$, and calculate the inverse of $[S] = (s_{ij})$ when S is gcd-closed.

Key Words: The almost Hilbert-Smith matrix, the GCD matrix, gcd-closed set, factor closed set.

En Büyük Ortak Bölen Kapalı Kümeler Üzerinde Hemen Hemen Hilbert-Smith Matrisleri

Özet: $S = \{x_1, x_2, ..., x_n\}$ elemanları pozitif tamsayılar olan bir küme olsun ve (x_i, x_j) , x_i ve x_j tamsayılarının en büyük ortak bölenini göstersin. ij-yinci elemanı $s_{ij} = (x_i, x_j)/x_i x_j$ olan $n \times n$ tipinde $[S] = (s_{ij})$ matrisine, S kümesi üzerinde hemen hemen Hilbert-Smith matrisi denir. Bu çalışmada $[S] = (s_{ij})$ matrisinin determinantının değeri elde edilmiş ve S, en büyük ortak bölen kapalı ölduğunda $[S] = (s_{ij})$ matrisinin tersi hesaplanmıştır.

Anahtar Kelimeler: Hemen hemen Hilbert-Smith matrisi, GCD matrisi, en büyük ortak bölen kapalı küme, çarpan kapalı küme.

1. Introduction

Let $S = \{x_1, x_2, ..., x_n\}$ be a set of distinct positive integers. The matrix $(S) = (s_{ij})$, where $s_{ij} = (x_i, x_j)$, the greatest common divisor of x_i and x_j , is called the greatest common divisor (GCD) matrix on S [1]. Beslin and Ligh initiated the study of GCD matrices in the direction of their

¹ This is a part of PhD Thesis, which is presented at Graduate School of Natural and Applied Sciences of Selcuk University in 2001.

Selcuk University, Akoren Ali Riza Ercan Vocational College, [42460] Akoren – Konya, TURKEY
Gazi University, Department of Mathematics, [06500] Teknikokullar – Ankara, TURKEY

structure, determinant, arithmetic in Z_n . Also they showed that $\det(S) = \phi(x_1)\phi(x_2)...\phi(x_n)$, where ϕ is Euler's totient function, if S is factor closed. A set S of positive integers is said to be factor closed (FC) if all positive factors of any element of S belong to S. In [2] Li calculated the determinant of the GCD matrix on S when S is not factor closed.

Then Beslin and Ligh [3] showed that the determinant of the GCD matrix on a gcd-closed set $S = \{x_1, x_2, ..., x_n\}$ is $B(x_1)B(x_2)...B(x_n)$, where B is an arithmetical function defined on S as

$$B(x_i) = \sum_{\substack{d \mid x_i \\ d \nmid x_j \\ i < i}} \phi(d).$$

A set $S = \{x_1, x_2, ..., x_n\}$ of positive integers is greatest common divisor closed (gcd-closed) if for every i, j = 1, 2, ..., n, (x_i, x_j) is in S. Also, Beslin and Ligh calculated the determinant of the GCD matrix on S when S is not gcd-closed. Furthermore, Bourque and Ligh calculated the inverse of the GCD matrix on S if S is gcd-closed [4].

Let f be a multiplicative function and let $S = \{x_1, x_2, ..., x_n\}$ be factor closed. An arithmetical function f is called multiplicative if f is not identically zero and if f(ab) = f(a)f(b) whenever (a,b)=1. Denote by $f([x_i,x_j])$ the n×n matrix having f evaluated at the least common multiple $[x_i,x_j]$ of x_i and x_j as its ij-entry. In [6] Bourque and Ligh calculated the determinant of $f([x_i,x_j])$. Also they obtained the inverse of $f([x_i,x_j])$ if $f([x_i,x_j])$ is invertible.

In this paper, we give a structure theorem for the almost Hilbert-Smith matrix and calculate the determinant of the almost Hilbert-Smith matrix on S whether S is gcd-closed or not. Also we show that the almost Hilbert-Smith matrix is positive definite. Furthermore we calculate the inverse of the almost Hilbert-Smith matrix on S if S is gcd-closed. In the last section we compare our results with the results presented by Bourque and Ligh [6].

2. The Value of the Determinant of the Almost Hilbert-Smith Matrix

Definition 1. Let $S = \{x_1, x_2, ..., x_n\}$ be a set of distinct positive integers and let (x_i, x_j) denote the greatest common divisor of x_i and x_j . The $n \times n$ matrix $[S] = (s_{ij})$, where $s_{ij} = (x_i, x_j)/x_i x_j$, is called the almost Hilbert-Smith matrix on S.

It is obvious that the almost Hilbert-Smith matrix on $S = \{x_1, x_2, ..., x_n\}$ is symmetric and rearrangements of the elements of S yield similar matrices. Hence, we may assume $x_1 < x_2 < ... < x_n$. Throughout this paper, $S = \{x_1, x_2, ..., x_n\}$ denotes an ordered set of distinct positive integers such that $x_1 < x_2 < ... < x_n$.

Definition 2. A set S of positive integers is said to be factor closed (FC) if all positive factors of any element of S belong to S.

Definition 3. A set $S = \{x_1, x_2, ..., x_n\}$ of positive integers is greatest common divisor closed (gcd-closed) if for every i, j = 1,2,...,n, (x_i, x_j) is in S.

Every factor closed set is gcd-closed, but not conversely.

It is clear that any set $S = \{x_1, x_2, ..., x_n\}$ of positive integers is contained in a gcd-closed set. By \overline{S} we mean the minimal such gcd-closed set, or gcd-closure of S. It is obvious that $S \subseteq \overline{S}$, and $S = \overline{S}$ if and only if S is gcd-closed.

Let B be an arithmetical function on a set $S = \{x_1, x_2, ..., x_n\}$ of positive integers with $x_1 < x_2 < ... < x_n$ defined as

$$B(x_i) = \sum_{\substack{d \mid x_i \\ d \nmid x_j \\ i < i}} \phi(d), \tag{1}$$

where ϕ is Euler's totient function. For every i, j = 1,2,...,n,

$$\left(x_{i}, x_{j}\right) = \sum_{x_{k} \mid \left(x_{i}, x_{j}\right)} B\left(x_{k}\right) \tag{2}$$

if $S = \{x_1, x_2, ..., x_n\}$ is gcd-closed [3].

The following theorem describes the structure of the almost Hilbert-Smith matrix.

Theorem 1. Let $\overline{S} = \{y_1, y_2, ..., y_m\}$ be the gcd-closure of $S = \{x_1, x_2, ..., x_n\}$ with $x_1 < x_2 < ... < x_n$ and $y_1 < y_2 < ... < y_m$. Then the almost Hilbert-Smith matrix on S is the product of an n×m matrix R and an m×n matrix Q.

Proof: Let the $n \times m$ matrix $R = (r_{ij})$ and the matrix $Q = (q_{ij})$ defined as follows:

$$r_{ij} = \begin{cases} \frac{B(y_j)}{x_i} & \text{if } y_j | x_i, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$q_{ij} = \begin{cases} \frac{1}{x_j} & \text{if } y_i | x_j, \\ 0 & \text{otherwise.} \end{cases}$$

By (2) the ij-entry of RQ is equal to

$$(RQ)_{ij} = \sum_{k=1}^m r_{ik} q_{kj} = \sum_{\substack{y_k \mid x_i \\ y_k \mid x_i}} \frac{B(y_k)}{x_i x_j} = \frac{1}{x_i x_j} \sum_{\substack{y_k \mid (x_i, x_j)}} B(y_k) = \frac{\left(x_i, x_j\right)}{x_i x_j}.$$

Then [S] = RQ. Thus the proof is complete.

Let $R = (r_{ij})$ and $Q = (q_{ij})$ be as in Theorem 1. It is clear that $r_{ij} = q_{ji}B(y_j)$. If $\Delta = diag(\delta_1, \delta_2, ..., \delta_m)$, where $\delta_i = B(y_i)$ for i = 1, 2, ..., m, is an $m \times m$ diagonal matrix, then the almost Hilbert-Smith matrix on S is written as $[S] = Q^T \Delta Q$. Also we define the $n \times m$ matrix $E = (e_{ij})$, where

$$e_{ij} = \begin{cases} 1 & \text{if } y_j | x_i, \\ 0 & \text{otherwise,} \end{cases}$$
 (3)

and the n×n matrix D = diag $\left(\frac{1}{x_1}, \frac{1}{x_2}, ..., \frac{1}{x_n}\right)$. It is clear that $Q^T = DE$. Then $[S] = RQ = Q^T \Delta Q = DE \Delta E^T D$.

Theorem 2. Let S and \overline{S} be as in Theorem 1. Then the determinant of the almost Hilbert-Smith matrix on S is

$$\det[S] = \sum_{1 \le k_1 < k_2 < \dots < k_n \le m} (\det Q_{(k_1, k_2, \dots, k_n)}^T)^2 B(y_{k_1}) B(y_{k_2}) ... B(y_{k_n}),$$

where $Q_{(k_1,k_2,\dots,k_n)}^{\mathsf{T}}$ is the submatrix of Q^{T} consisting of k_1 th, k_2 th,..., k_n th columns of Q^{T} .

Proof: From Theorem 1 [S] = RQ. Now apply the Cauchy-Binet formula (see [5], p. 9) to obtain

$$\text{det}[S] = \text{det}(RQ) = \sum_{1 \leq k_1 < k_2 < \dots < k_n \leq m} \text{det}\, R_{(k_1,k_2,\dots,k_n)} \, \text{det}\, Q_{(k_1,k_2,\dots,k_n)}^T \, .$$

It is clear that

$$\det \mathsf{R}_{(k_1,k_2,\dots,k_n)} = \det \mathsf{Q}_{(k_1,k_2,\dots,k_n)}^\mathsf{T} \det \Delta_{(k_1,k_2,\dots,k_n)} = \det \mathsf{Q}_{(k_1,k_2,\dots,k_n)}^\mathsf{T} \mathsf{B} \big(\mathsf{y}_{k_1} \big) \mathsf{B} \big(\mathsf{y}_{k_2} \big) ... \mathsf{B} \big(\mathsf{y}_{k_n} \big).$$

Then

Thus the proof is complete.

Corollary 1. Let S and \overline{S} be as in Theorem 1. Then the determinant of the almost Hilbert-Smith matrix on S is

$$\det[S] = \frac{1}{x_1^2 x_2^2 ... x_n^2} \sum_{1 \le k_1 < k_2 < ... < k_n \le m} (\det E_{(k_1, k_2, ..., k_n)})^2 B(y_{k_1}) B(y_{k_2}) ... B(y_{k_n}),$$

where $E_{(k_1,k_2,...,k_n)}$ is the submatrix of $E = (e_{ij})$ consisting of k_1 th, k_2 th,..., k_n th columns of $E = (e_{ij})$ given in (3).

Proof: By Theorem 2,

$$\det[S] = \sum_{1 \le k_1 < k_2 < \dots < k_n \le m} (\det Q_{(k_1, k_2, \dots, k_n)}^T)^2 \ B(y_{k_1}) B(y_{k_2}) . . B(y_{k_n}).$$

It is clear that

$$\det Q_{(k_1,k_2,...,k_n)}^T = \det D \det E_{(k_1,k_2,...,k_n)} = \frac{1}{X_4 X_2 ... X_n} \det E_{(k_1,k_2,...,k_n)},$$

since $Q^T = DE$. The result is immediate.

Example 1. The almost Hilbert-Smith matrix on $S = \{4,6,8\}$ is

$$[S] = \begin{bmatrix} \frac{1}{4} & \frac{1}{12} & \frac{1}{8} \\ \frac{1}{12} & \frac{1}{6} & \frac{1}{24} \\ \frac{1}{8} & \frac{1}{24} & \frac{1}{8} \end{bmatrix}.$$

Since gcd-closure of S is $\overline{S} = \{2,4,6,8\}$, $E = (e_{ij})$ given in (3) is

$$\mathsf{E} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}.$$

By Corollary 1,

$$det[S] = \frac{1}{4^{2}.6^{2}.8^{2}} \left(\begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}^{2} B(2)B(4)B(6) + \begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{vmatrix}^{2} B(2)B(4)B(8) + \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{vmatrix}^{2} B(2)B(4)B(8) + \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}^{2} B(4)B(6)B(8) \right).$$

Since

$$B(2) = \phi(1) + \phi(2) = 2 , \ B(4) = \phi(4) = 2 , \ B(6) = \phi(3) + \phi(6) = 4 , \ \text{and} \ B(8) = \phi(8) = 4 ,$$

we have

$$\det[S] = \frac{5}{2304}$$
.

Corollary 2. Let $[S] = (s_{ij})$ be the $n \times n$ almost Hilbert-Smith matrix on a set $S = \{x_1, x_2, ..., x_n\}$ of positive integers. Then $[S] = (s_{ij})$ is positive definite and invertible.

Proof: Let S and \overline{S} be as in Theorem 1, and let $[S] = (s_{ij})$ be the n×n almost Hilbert-Smith matrix on S. Consider the matrix $[S_t] = (s_{ij})_{i,j=1}^t$, which is a submatrix of $[S] = (s_{ij})$ for every $t=1,2,\ldots,n$. It is clear that $[S_t]$ is the t×t almost Hilbert-Smith matrix on the set $S_t = \{x_1,x_2,\ldots,x_t\} \subset S$. \overline{S}_t , the gcd-closure of S_t , is a subset of \overline{S} since $S_t \subset S$. Let $\overline{S}_t = \{y_{\alpha_1},y_{\alpha_2},\ldots,y_{\alpha_r}\}$, where $\{\alpha_1,\alpha_2,\ldots,\alpha_r\} \subset \{1,2,\ldots,m\}$ with $\alpha_1 < \alpha_2 < \ldots < \alpha_r$. By Corollary 1,

$$\det[S_{t}] = \frac{1}{x_{1}^{2}x_{2}^{2}...x_{t}^{2}} \sum_{1 \leq k_{1} < k_{2} < ... < k_{t} \leq r} (\det E_{(\alpha_{k_{1}}, \alpha_{k_{2}}, ..., \alpha_{k_{t}})})^{2} B(y_{\alpha_{k_{1}}}) B(x_{\alpha_{k_{2}}})...B(x_{\alpha_{k_{t}}})$$
(4)

for every t=1,2,...,n. Since each summand in the right hand side of (4) is positive, $\det[S_t] > 0$ for every t=1,2,...,n. Thus $[S] = (s_{ij})$ is positive definite, and hence invertible.

3. The Inverse of the Almost Hilbert-Smith Matrix

In this section we calculate the inverse of the almost Hilbert-Smith matrix on S when S is gcd-closed.

Theorem 3. Let $S = \{x_1, x_2, ..., x_n\}$ be gcd-closed. Then the inverse of the almost Hilbert-Smith matrix $[S] = (s_{ii})$ is the matrix $B = (b_{ij})$ such that

The Almost Hilbert-Smith Matrices on Gcd-closed Sets

$$b_{ij} = x_i x_j \sum_{\substack{x_i \mid x_k \\ x_j \mid x_k}} \frac{1}{B(x_k)} \sum_{\substack{dx_i \mid x_k \\ dx_i \nmid x_t \\ x_t < x_k}} \mu(d) \sum_{\substack{dx_j \mid x_k \\ dx_j \nmid x_t \\ x_t < x_k}} \mu(d),$$

where μ is Möbius function.

Proof: Let $Q = (q_{ij})$ be the $n \times n$ matrix defined in Theorem 1 and the $n \times n$ matrix $N = (n_{ij})$ be defined as follows:

$$n_{ij} = x_i \sum_{\substack{dx_i | x_j \\ dx_i / x_t \\ x_t < x_i}} \mu(d).$$

Calculating the ij-entry of the product NQ gives

$$(NQ)_{ij} = \sum_{k=1}^{n} n_{ik} q_{kj} = \sum_{x_k \mid x_j} \frac{x_i}{x_j} \sum_{\substack{dx_1 \mid x_k \\ dx_1 \mid x_t \\ x_i < x_k}} \mu(d) = \frac{x_i}{x_j} \sum_{\substack{d \mid x_j \\ |x_i|}} \mu(d) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Hence $Q^{-1}=N$. If $\Delta=diag(B(x_1),B(x_2),...,B(x_n))$ then $S=Q^T\Delta Q$. Therefore $S^{-1}=N\Delta^{-1}N^T=(b_{ij})$, where

$$b_{ij} = \left(N\Delta^{-1}N^{T}\right)_{j} = \sum_{k=1}^{n} \frac{1}{B(x_{k})} n_{ik} n_{jk} = x_{i} x_{j} \sum_{\substack{x_{1} \mid x_{k} \\ x_{j} \mid x_{k} \\ x_{1} \mid x_{k} \\ x_{1} < x_{k} < x_{k}}} \frac{1}{B(x_{k})} \sum_{\substack{dx_{1} \mid x_{k} \\ dx_{1} \mid x_{k} \\ x_{1} < x_{k} < x_{k} < x_{k}}} \mu(d) \sum_{\substack{dx_{j} \mid x_{k} \\ dx_{j} \mid x_{k} \\ x_{1} < x_{k} $

The proof is complete.

Example 2. The almost Hilbert-Smith matrix on $S = \{2,4,6\}$ is

$$[S] = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{12} \\ \frac{1}{6} & \frac{1}{12} & \frac{1}{6} \end{bmatrix}.$$

[S] is invertible, since $S = \{2,4,6\}$ is gcd-closed. Moreover, by Theorem 3

$$\begin{aligned} b_{11} &= 2.2 \left(\frac{\mu(1)\mu(1)}{B(2)} + \frac{\mu(2)\mu(2)}{B(4)} + \frac{\mu(3)\mu(3)}{B(6)} \right) = 5 \text{ , } b_{12} = 2.4 \cdot \left(\frac{\mu(2)\mu(1)}{B(4)} \right) = -4 \text{ , } \\ b_{13} &= 2.6 \cdot \frac{\mu(3)\mu(1)}{B(6)} = -3 \text{ , } b_{22} = 4.4 \cdot \left(\frac{\mu(1)\mu(1)}{B(4)} \right) = 8 \text{ , } b_{23} = 0 \text{ , } b_{33} = 6.6 \cdot \frac{\mu(1)\mu(1)}{B(6)} = 9 \end{aligned}$$

Therefore, since $[S]^{-1} = B = (b_{ij})$ is symmetric we have

$$[S]^{-1} = \begin{bmatrix} 5 & -4 & -3 \\ -4 & 8 & 0 \\ -3 & 0 & 9 \end{bmatrix}.$$

4. Discussion

In this section, we compare our results with the results presented by Bourque and Ligh in [6].

Let f be a multiplicative function, and let $S = \{x_1, x_2, ..., x_n\}$ be factor closed. Denote by $f([x_i, x_j])$ the n×n matrix having f evaluated at the least common multiple $[x_i, x_j]$ of x_i and x_j as its ij-entry. In [6] Bourque and Ligh calculated the determinant of $f([x_i, x_j])$ and also they obtained the inverse of $f([x_i, x_j])$ if S is invertible. If f is defined as f(n) = 1/n for all $n \in Z^+$ then $f([x_i, x_j])$ becomes the n×n almost Hilbert-Smith matrix on S. For f(n) = 1/n, the statements of Theorem 2 in [6] are special cases of our results since every factor closed set is gcd-closed.

Let [S] be the n×n almost Hilbert-Smith matrix on $S = \{x_1, x_2, ..., x_n\}$. If S is factor closed then $B(x_i) = \phi(x_i)$ for every i = 1, 2, ..., n, and the matrix $E = (e_{ij})$ given in (3) is an n×n lower triangular matrix with diagonal (1, 1, ..., 1). Thus, by Corollary 1,

$$\det[S] = \prod_{i=1}^{n} \frac{\phi(x_i)}{x_i^2}, \tag{5}$$

and by Theorem 3, the inverse of [S] is the matrix $B = (b_{ij})$, where

$$b_{ij} = x_i x_j \sum_{\substack{x_i \mid x_k \\ x_j \mid x_k}} \frac{1}{\phi(x_k)} \mu\left(\frac{x_k}{x_i}\right) \mu\left(\frac{x_k}{x_j}\right).$$
 (6)

It should be noted that one can obtain (5) and (6) by taking f(n) = 1/n in Theorem 2 of [6].

References

- [1] Beslin S. and Ligh S., Greatest Common Divisor Matrices, Linear Algebra Appl., 118:69-76 (1989).
- [2] Li Z., The Determinants of GCD Matrices, Linear Algebra Appl., 134:137-143 (1990).
- [3] Beslin S. and Ligh S., GCD-Closed Sets and the Determinants of GCD Matrices, Fibonacci Quart., 30:157-160 (1992).
- [4] Bourque K. and Ligh S., On GCD and LCM Matrices, Linear Algebra Appl., 174:65-74 (1992).
- [5] Gantmacher F.R., The Theory of Matrices, Chelsea Publishing Company, New York, (1960).
- [6] Bourque K. and Ligh S., Matrices Associated with Multiplicative Functions, Linear Algebra Appl., 216:267-275 (1995).

.

.

.