İki Aşamalı Süreç Tekniği ile Hazırlanan İnce Film CulnSe₂ Yarıiletkenlerin Kristal Yapısı

Ö.Faruk YÜKSEL¹, Haldun KARABIYIK¹

Özet:Bu çalışmada, iki aşamalı süreç tekniği ile hazırlanmış olan ince film CulnSe₂ bileşik yarıiletkenlerin kristal yapısı araştırılmıştır. Farklı Cu/In oranları içerecek şekilde hazırlanmış üç numunedeki Cu, In ve Se miktarları enerji dağılım analizi (EDA) yöntemi ile belirlenmiş ve bu numunelerin alınan X-ışın kırınım (XRD) desenlerinden kristal yapılarının kalkoprit olduğu saptanmıştır. Ayrıca, yapının örgü sabitleri hesaplanmış ve elde edilen sonuçların hacimli (bulk) yapıdaki numuneler ile iyi bir uyum gösterdiği bulunmuştur.

Anahtar Kelimeler: İnce film, CuInSe2, Kalkoprit

Crystal Structure of CulnSe₂ Thin Film Semiconductors Prepared By Two-Stage Process Technique

Abstract: In this study, crystal structures of the compound semiconductor thin films, CulnSe₂, prepared by two-stage process technique are investigated. The Cu, In and Se amounts in three samples which are prepared as having different Cu/In ratios are determined by energy dispersive analysis (EDA) technique, and it is found by examining the x-ray diffraction (XRD) patterns that these samples have chalcopyrite crystal structure. Also, the lattice parameters of this structure are calculated and the obtained results are found in agreement with the those which is given for bulk samples.

Key Words: Thin film, CulnSe₂, Chalcopyrite

Giriş

Son yıllarda güneş pili uygulamaları için araştırılan malzemeler içerisinde ince film CuInSe₂ bileşik yarıiletkenleri gelecek vaad eden önemli bir yarıiletken olarak göze çarpmaktadır [1,2]. Bunun en önemli nedenleri, 1)CuInSe₂ nin optik band aralığının 1 eV civarında olması ve 2) soğurma katsayısının, band aralığından daha yüksek enerjili fotonlar için yaklaşık 2x10⁴ cm⁻¹ mertebelerinde olmasıdır. Bu nedenden, CuInSe₂ film çok ince de olsa üzerine düşen güneş ışığının %90 dan fazlasını soğurabilmektedir [3,4]. Bu özellikler, CuInSe₂ nin bir güneş pili malzemesi olarak tercih edilmesinin en önemli nedenleri arasında sayılabilir. CuInSe₂ nin elektriksel özellikleri önemli ölçüde içerdiği Cu, In ve Se ların atomik yüzdelerine bağlı olarak değişimler gösterir [5,6].

Bu ince film malzemeleri, hem amorf hem de polikristal olarak büyütülebilmektedir. Polikristal ince filmler genellikle kalkoprit yapıda oluşur. Güneş pili uygulamalarında verimlilik nedeni ile çoğunlukla polikristal CuInSe₂ filmler kullanılmaktadır [7].

Bu ince filmler çok değişik yöntemlerle hazırlanabilmektedir. En yüksek verimli CuInSe₂ güneş pilleri buharlaştırma yöntemi ile hazırlanan ince filmler ile elde edilmiştir [3]. Buharlaştırma işlemi ise farklı tekniklerle yapılabilmektedir. Bunlar; tek kaynaktan buharlaştırma, iki kaynaktan buharlaştırma, üç kaynaktan buharlaştırma ve iki aşamalı süreçtir. Bu teknikler arasında son yıllarda üç kaynaktan buharlaştırma ile Başol ve Kapur tarafından geliştirilen iki aşamalı süreç en yaygın kullanılanlarıdır. Bunun nedeni, büyütülen

¹ S. Ü. Fen-Edebiyat Fakültesi Fizik Bölümü (42031) Kampüs/KONYA

film kalitesinin daha iyi, dolayısıyla bu filmlerle yapılan güneş pillerinin daha yüksek verime sahip olmasıdır [8,9].

Materyal ve Metot

Materyal

Üçlü ABX₂ yarıiletkenleri iki ana grupta ele alınabilir. Birinci grup üçlü kalkopritler (chalcopyrites) olup $A^{T}B^{III}X_{2}^{VI}$ şeklindedir. Burada A=Cu, Ag; B=Al, Ga, In, TI ve X=S, Se, Te olabilir. Bu grup bileşik yarıiletkenlere CuAlS₂, CuAlSe₂, CuAlTe₂,CuGaS₂, CuGaSe₂, CuGaTe₂, CuInS₂, CuInSe₂, CuInTe₂, CuTIS₂, CuTISe₂, AgAlSe₂, AgAlSe₂, AgGaSe₂, AgGaSe₂, AgGaTe₂, AgInS₂, AgInSe₂, AgInTe₂ örnek verilebilir. Bu bileşik yarıiletkenler ikili II-VI bileşik yarıiletkenlere (ZnS, ZnO, ZnSe, ZnTe, CdS, CdSe, CdTe,...) elektronik yapı olarak benzerler. İkinci grup ise üçlü piniktitler (Pnictides) olup, bunlar $A^{II}B^{IV}X_{2}^{V}$ şeklindedir. Burada A=Zn, Cd; B=Si, Ge, Sn ve X=P, As, Sb olabilir. Bu grup bileşik yarıiletkenlere ise ZnSiP₂, ZnSiAs₂, ZnGeP₂, ZnGeAs₂, ZnSnP₂, ZnSnAs₂, CdSiP₂, CdSiAs₂, CdSeP₂, CdGeP₂, CdGeAs₂, ZnSnSb₂, CdSnAs₂ örnek verilebilir. Bu bileşik yarıiletkenlere ise üçlü piniktitler (AlSb, GaP, GaAs, InP,...) benzerdir. Bu güne kadar bilinen 36 tane üçlü bileşik yarıiletken vardır [2,10,11].

Üçlü kalkopritlerin kristal yapısı D_{2d}^{12} uzay grubuna ait olup, ilkel birim hücrede 8 atom bulunur ve kristal örgü iki ZnS (çinkoblend) yapının üst üste gelmiş hali olarak gözönüne alınabilir. Birim hücredeki her anyon iki A ve iki B katyonu ile bağ yapmış olup, her katyon ise dört anyon ile tetrahedral bağ yapar. Şekil 1'de I-III-VI₂ bileşik yariletkenlerin kristal yapısı ve ayrıca karşılaştırma amacıyla ZnS yapı da verilmektedir.

Bazı I-III-VI₂ bileşik yariletkenlerin kristal yapı parametreleri Tablo 1'de verilmektedir. Tabloda a ve c örgü sabitlerini, η =c/2a tetragonal distorsiyon parametresini ve u anyon yerdeğiştirme parametresini ifade etmektedir. Tablo 2'de ise kalkoprit ABX₂ birim hücresinde yer alan sekiz atomun koordinatları verilmektedir. Örgü vektörleri **a**₁=a(1,0,0), **a**₂=a(0,1,0) ve **a**₃=a(1/2,1/2, η) şeklindedir. Birim hücre hacmi ise V=(a²c)/2 dir.

Şekil 1. Çinkoblend yapı ve I-III-VI₂ bileşikleri için tetragonal kalkoprit yapısı

, , , , ,					
Bileşik	° a(Å)	°, c(Å)	η	u(Å)	
CuAIS ₂	5,3340	10,4439	0,979	0,1455	
CuGaS ₂	5,3560	10,4334	0,974	0,1455	
CuInS ₂	5,5230	11,1178	1,0065	0,214	
CuAlSe ₂	5,6020	10,9463	0,977	0,1423	
CuGaSe ₂	5,6140	11,0315	0,9825	0,1323	
CuInSe ₂	5,7840	11,6143	1,0040	0,1185	

Tablo 1. Değişik I-III-VI₂ bileşik yarıiletkenlerin örgü sabitleri. η=c/(2a) tetragonal distorsiyon ve u anyon yer değiştirme parametreleri [10].

Tablo 2. ABX₂ kalkoprit yapının birim hücresindeki sekiz atomun koordinatları [10].

Atom	Koordinatlar		
A ₁	0,0,0		
A ₂	0,a/2,c/4		
B ₁	a/2,a/2,0		
B ₂	a/2,0,c/4		
X ₁	a(0,25+u),a/4,c/8		
X ₂	a(0,75-u),3a/4,c/8		
X ₃	a/4,a(0,75+u),3c/8		
X_4	3a/4,a(0,25-u),3c/8		

Metot

İnce filmlerin hazırlanması amacıyla geliştirilmiş bir çok yöntem vardır. Bunların bir kısmı, vakumda atomik veya moleküler çökeltme işlemleri, diğer bir kısmı ise atmosfer basıncı komşuluğunda taşıyıcı bir gaz veya sıvıdan çökeltme işlemlerini içermektedir. Vakum buharlaştırma yönteminin, sıcak duvar buharlaştırma (hot-wall evaporation) yöntemi ve elektron demeti buharlaştırma (e-beam evaporation) yöntemi olmak üzere iki farklı şekilde uygulandığı bilinmektedir.

Bu çalışmada kullanılan numuneler e-demeti (elektron demeti=e-demeti) buharlaştırma yöntemi ve iki aşamalı süreç tekniği kullanılarak hazırlanmıştır. Bu yöntemde vakumda buharlaştırılan elementlerin atomlarına daha fazla enerji yüklemek ve kimyasal aktiviteyi arttırmak için bir elektron demeti oluşturulur. Bu elektron demeti oda içerisinde gaz halinde bulunan numuneleri iyonlaştırarak daha aktif hale getirir. Bu yöntemde CuInSe₂ ince filmler, dört farklı şekilde hazırlanabilmektedir. Bunlar; tek kaynaktan buharlaştırma, iki kaynaktan buharlaştırma ve iki aşamalı süreç teknikleridir [1,7,9].

Sürecin birinci aşamasında Cam (Corning 7059) alttabaka üzerine önce Cu film ve daha sonra bunun üstüne In film kaplanmıştır. Bu işlemler 2x10⁻⁵ torr basınç altında ve 5-9 saflıkta (%99,99999) kaynak malzemeler kullanılarak yapılmıştır. Cu tabakanın kalınlığı 0,2 µm'ye indiyumun kalınlığı ise istenilen Cu/In oranına göre ayarlanmıştır. Örneğin, Cu/In oranının 1,00 olması için gerekli olan In tabakanın kalınlığı 0,44 µm'dir. İşlemler sırasında alttabaka sıcaklığı 350°C ve buharlaştırma hızı ise 20 Å/s civarında tutulmuştur.

Sürecin ikinci aşamasında ise, Cu-In filmlere selenyum katmak amacıyla, hazırlanan Cam/Cu-In yapı bir sıcak tüp reaktöre konarak, %5-10 H₂Se içeren Ar gazında ve 400°C'de bir saat süreyle tutulmuş, böylece istenen Cam/CuInSe₂ numuneler elde edilmiştir. İki aşamalı süreç tekniğinin blok şeması Şekil 2'de, numunelerin şematik gösterimi ise Şekil 3'de verilmektedir. Hazırlanan CuInSe₂ filmlerin Tencor profilometre ile yapılan kalınlık ölçümlerinde, kalınlıkları 2,4-2,6 µm arasında bulunmuştur.

Bu araştırmada üç farklı Cu/In oranına sahip CuInSe₂ ince filmin içerdikleri Cu, In ve Se miktarları, enerji dağılım analizi yöntemi ile bulunmuştur. Bu amaçla; enerji dağılım spektrumları, enerji dağılım spektrometreye (EDAX) sahip JEOL JSM-840A tarama elektron mikroskobunda (SEM) alınmıştır. Elektronlar 10 kV'luk bir potansiyel farkında hızlandırılmış ve numunedeki Cu, In ve Se'un L_a geçişleri sayılmıştır. X-ışın kırınım (XRD) desenleri ise bakır tüp içeren ve dalgaboyu λ = 1,5418 Å (bakırın K_a geçişi) olan PHILIPS PW3710 X-ışın difraktometresinde alınmıştır. Şekil 2. İnce film CuInSe₂ numunelerin hazırlanmasında kullanılan iki aşamalı süreç tekniğinin blok şeması.

Şekil 3. Hazırlanan ince film CulnSe₂ numunenin şematik gösterimi.

Sonuçlar ve Tartışma

Hazırlanan üç CulnSe₂ ince film numunelerinin enerji dağılım spektrumları alınmış ve A₁ numunesine ait enerji dağılım spektrumu Şekil 4'de verilmiştir. Hazırlanan tüm numunelerin enerji dağılım spektrumları, taramalı elektron mikroskobuyla birlikte kullanılan bilgisayar yardımıyla, değerlendirilmiş ve bu numunelerin L_α geçişlerine ait piklerin alanlarından bulunan Cu, In ve Se atomik yüzdeleri ile Cu/In oranları Tablo 3'de listelenmiştir.

Üç numunenin XRD desenleri alınmış ve A₁ numunesine ait XRD deseni Şekil 5'de verilmiştir. Agnihotri ve ark., Szot ve Haneman, Don ve Hill, Park ve ark. yaptıkları çalışmalarda kalkoprit yapıdaki CulnSe₂ polikristal filmlerin kırınım desenlerinin 20 nın 26,6°, 27,8°, 35,6°, 42,0°, 44,4°, 52,5°, 64,5°, 71,0° değerlerine karşılık sekiz tane pike sahip olduğunu ve bunların sırasıyla (112), (103), (211), (105)/(213), (220)/(204), (116)/(312), (008) ve (316) düzlemlerinden yansıdığını saptamışlardır[12-15].

A₁ numunesinin kırınım deseninde görüldüğü gibi, 20'nın 26,625°, 27,700°, 35,510°, 41,975°, 44,395°, 52,410° ve 64,115° değerlerinde yukarıda anılan pikler aynen gözlenmiştir. Diğer iki numune de

benzer XRD spektrumu vermiştir. Böylece, hazırlanan CuInSe₂ filmlerin kalkoprit yapıda olduğu sonucuna varılmıştır.

Ayrıca üç numunenin kırınım desenlerindeki (220) ve (008) yansımaları göz önüne alınarak, bilinen (hkl) düzlemler arası uzaklık denklemi $d_{hk\ell} = \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{\ell^2}{c^2}\right)^{-1/2}$ kullanılarak, yapının örgü sabitleri (a,c)

hesaplanmış ve sonuçlar Tablo 3'de verilmiştir. Hesaplanan bu değerler hacimli (bulk) numuneler için Tablo 1'de verilen değerlerle iyi bir uyum göstermektedir.

Şekil 4. A₁ numunesinin enerji dağılım spektrumu.

Şekil 5. A₁ numunesinin XRD deseni.

Numun	Cu (%)	In (%)	Se (%)	Cu/In	Yansıma	2	Hesaplanan
е					Düzlemi (hkl)	(derece)	Örgü Sabiti (Å)
A ₁	18,99	33,44	47,57	0,5659	(220)	44,135	
							a=5,8037
					(008)	64,115	
							c=11,6193
A ₂	17,10	34,74	48,16	0,4922	(220)	44,190	
							a=5,7968
					(008)	64,400	
							c=11,5734
A ₃	15,71	35,71	48,58	0,4399	(220)	44,315	
							a=5,7813
					(008)	64,480	
							c=11,5606

Tablo 3. Üç farklı numunenin enerji dağılım analizi sonuçları ve XRD desenlerinden bulunan örgü sabitleri. (Cu, In ve Se yüzdeleri atomik yüzde cinsindendir.)

Teşekkür

Katkılarından dolayı Dr. Bülent M. BAŞOL'a, Fiz. Müh. Mehmet BÜLBÜL'e ve Dr. Akın GEVEN'e teşekkür ederiz.

Kaynaklar

1-Başol, B. M., Polycrystalline thin film compound solar cells, Tr. J. of Physics, 17, 294-319 (1993).

2-Oktik, Ş., Low cost, non-vacuum techniques for the preparation of thin/thick films for photovoltaic applications. Prog. Crystal Growth and Charact., 17, 171-240 (1988).

3-Başol, B. M., High efficiency CuInSe₂ thin film solar cells, Tr. J. of Physics, 17, 221-233 (1993).

- 4-Kapur, V. K., Başol, B. M., Tseng, E. S., Low cost methods for the production of semiconductor films for CulnSe₂/CdS solar cells, Solar Cells, 16, 289-316 (1987).
- 5-Neumann, H., Nowak, E., Kühn, G., Heise, B., **The electrical properties of CulnSe₂ thin films deposited onto CaF₂ substrates**, Thin Solid Films, 102, 201-208 (1983).
- 6-Noufi, R.,Dick, J., Compositional and electrical analysis of the multilayers of a CdS/CulnSe₂ solar cells, J. Appl. Phys., 58, 3884-3887 (1985).

7-Chopra, K. L., Das, S. R., Thin Film Solar Cells, Plenum Press, New York (1983).

- 8-Başol, B. M., Preparation techniques for thin film solar cell materials: Processing perspective. Jpn. J. Appl. Phys., 32, 35-40 (1993).
- 9-Başol, B. M., Kapur, V. K., Deposition of CulnSe₂ films by a two-stage process utilizing e-beam evaporation, IEEE Trans. on Elect. Devices, 37, 418-421 (1990).
- 10-Shay, J. L., Wernick, J. H., Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications, Pergamon Press, Oxford (1974).
- 11-Cohen, L. M., Chelikowsky, J. R., Electronic Structure and Optical Properties of Semiconductors, Springer-Verlag, New York (1989).
- 12-Agnihotri, O. P., Ram, P. R., Thangaraj, R., Sharma, A. K., Raturi, A., Structural and optical properties of sprayed CulnSe₂ films, Thin Solid Films, 102, 291-297 (1983).
- 13-Szot, J., Haneman, D., Preparation and characterization of CulnSe₂ and CdS films. Solar Energy Materials, 11, 289-298 (1984).
- 14-Don, E. R., Hill, R., The structure of CulnSe₂ films formed by co-evaporation of the elements, Solar Cells, 16, 131-142 (1986).
- 15-Park, J. W., Chung, G. Y., Ahn, A. T., Im, H. B., Effect of hydrogen in the selenizing atmosphere on the properties of CulnSe₂ thin films. Thin Solid Films, 245, 174-179 (1994).