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Some Inequalities on The Permanents 
 
 

Dursun TAŞCI 1
 
 

Abstract: In this paper we obtained some inequalities about permanents of Hadamard product of matrices 
and permanents of sum of matrices.  
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Permanentler Üzerine Bazı Eşitsizlikler 
 
 

Özet: Bu çalışmada matrislerin Hadamard çarpımının Permanentleri ve matrislerin toplamının Permanentleri 
ile ilgili bazı eşitsizlikler elde edildi.  
 
Anahtar Kelimeler: Permanent, Hadamard Çarpımı, Pozitif Yarı tanımlı Hermityen Matrisler. 

 
 
 

Introduction and the Main Results 
 
Definition 1.[1] The Permanent of real n×n matrix nij M)a(A ∈=  is defined by  

∑ ∏
∈σ =

σ=
nS

n

i
)i(ia)A(per

1
, 

where  is the symmetric group of order n. nS
The permanent can thus be thought of as a function whose domain is the set of n×n real 

matrices and whose range is the set of real numbers. 
 
Definition 2.[2] If )a(A ij=  and )b(B ij=  are n×n matrices then their Hadamard product is 

the n×n matrix BAC ο= whose (i,j) entry is .  ijijba
 
Lemma 1.[2] If A and B positive semidefinite Hermitian matrices then so is . BAο
 
Theorem 1.[1] If )a(A ij=  is an n×n matrix then for any i, ni ≤≤1 ,  

∑
=

=
n

j
ijij )A(pera)A(per

1
, 

where  denotes the submatrix obtained from A by deleting rows i and colums j. ijA
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Theorem 2.  Let  nMA ∈   be positive semidefinite Hermitian matrix and define 
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where  is the (n-1)×(n-1) principal submatrix of A that results from deleting the first row and 
column of A and  denotes n×n matrices. Then  
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Proof. It suffices to prove that  
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Now we must show that  
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and  

011
11

≥− b
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,                                                                                             (6) 

respectively. Considering Theorem 1 we have  
)BA(perba)BA(perba)BA(perba)BA(per nnnn 11111212121211111111 ο++ο+ο=ο L ,      (7) 

where  and  , jA1 jB1 nj1 ≤≤ , denote the submatrices obtained from A and B by deleting  row 1 
and columns j respectively. Now from (7 ) we write 

)BA(perba)BA(per 11111111 ο≥ο  
or 

01111
1111

≥−
ο
ο ba

)BA(per
)BA(per

. 

Similarly the inequalities (5) and (6) are satisfied . From (4), (5), and (6), the inequality (1) holds and 
thus the proof is complete.  

 
Theorem 3. If   are n×n matrices with nonnegative entries then  nA,,A,A K21
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Proof.  We use induction on  n for the proof of Theorem. It is true for n = 2 . Indeed the (i,j) 

entry of  is just , where and  are n×n matrices with 

nonnegative entries. Thus a typical term in the sum defining 
21 AA + )(

ij
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ij aa 21 + )a(A )(
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Now if we multiply out the product (9) and throw a way all terms expect  
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we obtain (remember  and   have nonnegative entries) 1A 2A
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If  we sum all the inequalities (10) for  we get  nS∈σ
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that is,  
( ) ( ) ( )2121 AperAperAAper +≥+ . 

We assume now that the inequality (8) is true for n-1 and show that assumption implies that (8) 
holds for n. Now, if  
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thus we have proved by induction that the inequality (8) holds for all n.  
 
Corollary 1. If A is n×n matrix with nonnegative entries and 

2

TAA)A(H +
=  
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where TA  denotes the transpose of A.  
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Proof. By the Theorem 3 we have  
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thus the proof is complete.  
 
Corollary 2. If A and B are n×n matrices with nonnegative entries then 

[ ] )B(per)A(per)BA(per 42 ≥+ . 
 
Proof. Using arithmetic-geometric mean inequality and considering Theorem 3 we have  
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and therefore we write 
[ ] )B(per)A(per)BA(per 42 ≥+ . 

We conclude the paper with a theorem. 
 
Theorem 4. If A and B are n×n matrices with nonnegative entries and BA ≥  then 

)BA(per)B(per)A(per −≥−                                   (11)  
and 

)AB(per)BA(per −=−  .                                       (12)
  

Proof. By Theorem 3 we write  
)B(per)BA(per)BBA(per)A(per +−≥+−=  

and it follows that the inequality (11) holds. On the other hand we have 

( ) )AB(per)AB(per)()AB(per)BA(per n −=−−=−−=− 1  

Thus the proof is complete. 
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