İKİ ELEKTRONLU KUANTUM NOKTA YAPILARDA ELEKTRİK ALAN ETKİSİNİN PERTÜRBASYON YÖNTEMİYLE İNCELENMESİ

Ahmet TÜRKER

Öz


Bu çalışmada iki elektronlu kuantum nokta yapının dış elektrik alan etkisi altında elektronik özellikleri Pertürbasyon yöntemiyle incelendi. Hesaplamalarda helyum benzeri safsızlığa sahip olan iki elektronlu kuantum nokta yapı ele alındı ve sonsuz derinlikli küresel simetrik sınırlayıcı potansiyel göz önüne alındı. Sistemin dalga fonksiyonları tek elektron spin orbitallerinden oluşan Slater determinantı ile tanımlandı. Tek elektron spin orbitalleri ise Slater Tipi Orbitallerin(STO) lineer bileşimleri olarak kuruldu. Kuantum Genetik Algoritma(KGA) tekniği ile Schrödinger denkleminin olası çözümleri olan dalga fonksiyonları belirlendi ve bu dalga fonksiyonları kullanılarak iki elektronlu kuantum noktayapının taban ve bazı uyarılmış durumların enerjilerinin beklenen değerleri Hartree-Fock-Roothaan Metodu(HFR) ile hesaplandı. İki elektronlu kuantum nokta yapının dış elektrik alan etkisinde iken bu enerji seviyelerine gelen katkı pertürbasyon yöntemiyle hesaplandı.


Anahtar Kelimeler


Hartree-Fock Roothaan Metod, Kuantum nokta yapı, Kuantum Genetik Algoritm Hartree-Fock Roothaan Metod, Kuantum nokta yapı, Kuantum Genetik Algoritma

Tam Metin:

PDF

Referanslar


Arfken, G., 1985, Mathematical Methods for Physics, Third Edition, Academic Press Inc., Orlando.

Cakir, B., Ozmen, A., Atav, U., Yuksel, H., & Yakar, Y. 2007. Investigation of electronic structure of a Quantum Dot using Slater-Type Orbitals and Quantum Genetic Algorithm. International Journal of Modern Physics C, 18(1): 61-72.

Cakir, B., Ozmen, A., Atav, U., Yuksel, H., & Yakar, Y. 2008. Calculation of electronic structure of a spherical quantum dot using a combination of quantum genetic algorithm and Hartree-Fock-Roothaan method. International Journal of Modern Physics C, 19(4): 599-609.

Chang, K., & Xia, J.-B. 1998. The effects of electric field on the electronic structure of a semiconductor quantum dot. Journal of Applied Physics, 84(3): 1454.

Çakır, B., Yakar, Y., & Özmen, A. 2013. Calculation of oscillator strength and the effects of electric field on energy states, static and dynamic polarizabilities of the confined hydrogen atom. Optics Communications, 311: 222-228.

Çakır, B., Yakar, Y., & Özmen, A. 2015. Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential. Physica B: Condensed Matter, 458: 138-143.

Dane, C., Akbas, H., Minez, S., & Guleroglu, A. 2008. Electric field effect in a GaAs/AlAs spherical quantum dot. Physica E-Low-Dimensional Systems & Nanostructures, 41(2): 278-281.

Dujardin, F., A. Oukerroum, E. Feddi, J. B. B., J. Martínez-Pastor, & Zazi, M. 2012. Effect of a lateral electric field on an off-center single dopant confined in a thin quantum disk. Journal of Applied Physics, 111(3): 034317.

Duque, C. A., Kasapoglu, E., Sakiroglu, S., Sari, H., & Sokmen, I. 2011. Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field. Applied Surface Science, 257(6): 2313-2319.

Fry, P. W., Finley, J. J., Wilson, L. R., Lemaître, A., & Mowbray, D. J. S., M. S. Hopkinson, M. Hill, G. and Clark, J. C. 2000. Electric-field-dependent carrier capture and escape in self-assembled InAs/GaAs quantum dots. Applied Physics Letters, 77(26): 4344.

Håkanson, U., Håkanson, H., Johansson, M. K. J., Samuelson, L., & Pistol, M. E. 2003. Electric field effects in single semiconductor quantum dots observed by scanning tunneling luminescence. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21(6): 2344.

He, L., & Xie, W. 2010. Effects of an electric field on the confined hydrogen impurity states in a spherical parabolic quantum dot. Superlattices and Microstructures, 47(2): 266-273.

Huangfu, Y. F., & Yan, Z. W. 2008. Bound polaron in a spherical quantum dot under an electric field. Physica E-Low-Dimensional Systems & Nanostructures, 40(9): 2982-2987.

Jiang, L., Wang, H., Wu, H., Gong, Q., & Feng, S. 2009. External electric field effect on the hydrogenic donor impurity in zinc-blende GaN/AlGaN cylindrical quantum dot. Journal of Applied Physics, 105(5): 053710.

Karabulut, I., & Duque, C. A. 2011. Nonlinear optical rectification and optical absorption in GaAs-Ga1-xAlxAs double quantum wells under applied electric and magnetic fields. Physica E-Low-Dimensional Systems & Nanostructures, 43(7): 1405-1410.

Karabulut, I. b., & Baskoutas, S. 2008. Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity. Journal of Applied Physics, 103(7): 073512.

Kirak, M., Altinok, Y., & Yilmaz, S. 2013. The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum dot under external electric field. Journal of Luminescence, 136: 415-421.

Kırak, M., Yılmaz, S., Şahin, M., & Gençaslan, M. 2011. The electric field effects on the binding energies and the nonlinear optical properties of a donor impurity in a spherical quantum dot. Journal of Applied Physics, 109(9): 094309.

Kirak, M., Yilmaz, S., & Temizer, U. 2013. Nonlinear Optical Rectification and Oscillator Strength in a Spherical Quantum Dot with Parabolic Confinement in the Presence of the Electric Field. Journal of Nanoelectronics and Optoelectronics, 8(2): 165-169.

Lin, S. W., Song, A. M., Peaker, A. R., Caldas, M. l., & Studart, N. 2010. Electric-Field Dependence of Electron Emission from InAs∕GaAs Quantum Dots. 291-292.

Özmen, A., Çakır, B., & Yakar, Y. 2013. Electronic structure and relativistic terms of one-electron spherical quantum dot. Journal of Luminescence, 137: 259-268.

Rezaei, G., Vaseghi, B., & Ebrahimi, J. 2011. External electric field effects on the electronic and hydrogenic impurity states in ellipsoidal and semi-ellipsoidal quantum dots. Superlattices and Microstructures, 49(6): 591-598.

Rezaei, G., Vaseghi, B., & Sadri, M. 2011. External electric field effect on the optical rectification coefficient of an exciton in a spherical parabolic quantum dot. Physica B-Condensed Matter, 406(24): 4596-4599.

Ribeiro, F. J., Latgé, A., Pacheco, M., & Barticevic, Z. 1997. Quantum dots under electric and magnetic fields: Impurity-related electronic properties. Journal of Applied Physics, 82(1): 270.

Sadeghi, E. 2011a. Electric field and impurity effects on optical property of a three-dimensional quantum dot: A combinational potential scheme. Superlattices and Microstructures, 50(4): 331-339.

Sadeghi, E. 2011b. Linear and nonlinear optical absorption coefficients in an asymmetric graded ridge quantum wire. Superlattices and Microstructures, 49(1): 91-98.

Sahin, M., & Tomak, M. 2005a. Electronic structure of a many-electron spherical quantum dot with an impurity. Physical Review B, 72(12).

Sahin, M., & Tomak, M. 2005b. The self-consistent calculation of a spherical quantum dot: A quantum genetic algorithm study. Physica E-Low-Dimensional Systems & Nanostructures, 28(3): 247-256.

Vázquez, G. J., del Castillo‐Mussot, M., Mendoza, C. I., & Spector, H. N. 2004. Spherical quantum dot under an electric field. physica status solidi (c), 1(S1): S54-S57.

Vinolin, A., & Peter, A. J. 2014. Optical rectification in a strained GaAs0.9P0.1/GaAs0.6P0.4 quantum dot: Simultaneous effects of electric and magnetic fields. AIP Conference Proceedings: 1496-1497.

Xia, C., Zeng, Z., & Wei, S. 2010a. Electron and impurity states in GaN/AlGaN coupled quantum dots: Effects of electric field and hydrostatic pressure. Journal of Applied Physics, 108(5): 054307.

Xia, C., Zeng, Z., & Wei, S. 2010b. Shallow-donor impurity in zinc-blende InGaN/GaN asymmetric coupled quantum dots: Effect of electric field. Journal of Applied Physics, 107(5): 054305.

Yakar, Y., Cakir, B., & Ozmen, A. 2010a. Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential. Optics Communications, 283(9): 1795-1800.

Yakar, Y., Cakir, B., & Ozmen, A. 2010b. Linear and Nonlinear Optical Properties in Spherical Quantum Dots. Communications in Theoretical Physics, 53(6): 1185-1189.

Yakar, Y., Çakir, B., & Özmen, A. 2011. Computation of ionization and various excited state energies ofhelium and helium-like quantum dots. International Journal of Quantum Chemistry, 111(15): 4139-4149.

Yakar, Y., Çakır, B., & Özmen, A. 2010c. Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential. Optics Communications, 283(9): 1795-1800.

Yakar, Y., Çakır, B., & Özmen, A. 2013. Computation of relativistic terms in a spherical quantum dot. Journal of Luminescence, 134: 778-783.

Yakar, Y., Çakır, B., & Özmen, A. 2015a. Electronic structure of two-electron quantum dot with parabolic potential. Philosophical Magazine, 95(3): 311-325.

Yakar, Y., Çakır, B., & Özmen, A. 2015b. Linear and nonlinear absorption coefficients of spherical two-electron quantum dot. Computer Physics Communications, 188: 88-93.

Yesilgul, U., Ungan, F., Kasapoglu, E., Sari, H., & Sokmen, I. 2011. The linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a V-shaped quantum well under the applied electric and magnetic fields. Superlattices and Microstructures, 50(4): 400-410.


Madde Ölçümleri

Ölçüm Çağırılıyor ...

Metrics powered by PLOS ALM

Refback'ler

  • Şu halde refbacks yoktur.